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Wing Optimization Using Design of Experiment,
Response Surface, and Data Fusion Methods

A. J. Keane¤

University of Southampton, High� eld, Southampton, England SO17 1BJ, United Kingdom

An empirical drag prediction model plus design of experiment, response surface, and data-fusion methods are
brought together with computational � uid dynamics (CFD) to provide a wing optimization system. This system
allows high-quality designs to be found using a full three-dimensional CFD code without the expense of direct
searches. The metamodels built are shown to be more accurate than the initial empirical model or than simple
response surfaces based on the CFD data alone. Data fusion is achieved by building a response surface kriging of
the differences between the two drag prediction tools, which are working at varying levels of � delity. The kriging
is then used with the empirical tool to predict the drags coming from the CFD code. This process is much quicker
to use than direct searches of the CFD.

Introduction

T HE Southampton multilevel wing design environment1 is used
to study the merits of data fusion when applied to three-

dimensional computational � uid dynamics (CFD) solvers over a
transonic wing system. The aim is to build a multi� delity response
surface model (RSM) using both empirical and CFD data to model
variations in drag at � xed lift as gross changesare made to the over-
all wing parameters. Currently, such changes are usually assessed
using empirical concept design tools that make no attempt to solve
the � ow conditions over the wings being studied. Although these
concept tools can be extremely accurately calibrated to deal with
familiar geometries, they experience dif� culties whenever extreme
or even moderately novel con� gurations are considered. They are,
however, very easy to use and are capable of giving rapid estimates
of likely drag levels.2

It would, of course, be useful if full three-dimensional CFD
solvers could be used in lieu of the empirical codes contained in
normal concept tools: Currently this is not standard practice be-
cause of two major dif� culties. First, empirical concept tools do
not require complete geometric details of the wing being studied
because they typically work with gross wing parameters such as as-
pect ratio, span, mean camber, etc., whereas CFD solvers of course
require a complete surface and mesh description.Such descriptions
can be quite time consuming to develop to suf� cient levels of real-
ism to be of use in practical applications.Second, even Euler-based
CFD codes typicallyhave quite lengthy run times when considering
three-dimensional geometries. The Southampton multilevel wing
design environment addresses the � rst of these concerns: It allows
designers to generate complete geometric descriptions of transonic
wings, together with suitable CFD meshes from the limited set of
gross wing parameters usually available to concept designers. This
process mimics the process of wing design usually undertaken by
specialist aerodynamics divisions and makes use of orthogonal air-
foil section data to build a suitable cambered, twisted, tapered wing
that meets the user’s requirements.3;4

The systemasoriginallydescribed,however,did notoffermuch to
mitigate problems of run time. All that was proposed in the original
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system was that designers should start work with the concept tools
usually available and then switch to the full CFD solver whenever
suf� cient progress had been made. The ability to make this switch
withoutsupplyingextrageometricdata was itsmain advance.There-
fore, for example, when carrying out an optimization study, initial
searches would be made using the empirical concept tool, and these
designs could then be seamlessly passed to the Euler solver for fur-
ther, less wide-ranging, and necessarily shorter searches. Although
this approach was a step forward, it is not of great bene� t during
design synthesis because most of the design tradeoffs considered
are still made with the empirical code. Rather, it is most useful to
check rapidly that the empiricalmethodsof the originalconcept tool
are still valid at any more radical design points of interest.

The work reported here attempts to overcome this limitation
by fusing together data coming from empirical and CFD-based
drag routines using design of experiment (DOE) techniques5;6 and
kriging7 to build RSMs.8 Variants on these methods have been used
in aerospace design for some time. However, thus far they have
mostly been used to accelerate direct optimization approaches us-
ing expensive codes.9 It is only relatively recently that it has been
proposed that they might be helpful in multilevel analysis (some-
times termed multi� delity or zoom analysis).10¡14 The main aim in
multilevelanalysis is to use the DOE and krigingto producean RSM
that models corrections to the low-cost, empirical analysis so that
the correction model, together with the drag model of the original
concept tool, may be used in lieu of the full CFD code. This pro-
vides results that are both well calibrated and capable of being used
outside of the scope of the original concept tool in a seamless fash-
ion. The basic approach for this kind of multi� delity modeling is
described in more detail elsewhere15; here the aim is to demonstrate
its application to a modern wing design problem using the latest
approximation techniquesand to illustrate its potential bene� ts and
shortcomings in this relatively realistic setting. See the original ref-
erence 15 for a more complete description of the approach using
low-order polynomials.

The techniques described here have recently been incorporated
within the OPTIONS designexplorationsystem, and the resultspre-
sentedhavebeen producedusing that system to drive the Southamp-
ton wing design environment (Keane, A. J., “The OPTIONS De-
sign Exploration System User Guide and Reference Manual,”
http://www.soton.ac.uk/»ajk/options.ps [cited May 2001]).

Example and Some Basic Searches
Before a discussionof multilevel approaches is commenced, it is

useful to illustrate brie� y the use of the wing design environment
for direct searches, using either the empirical or CFD solvers. Here
the response being studied is the drag of a transonic civil transport
wing. A simple test problem has been constructed with the aim of
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Fig. 1 Initial wing geometry and overall CFD meshing (plan view shows upper surface supersonic Mach contours).

optimizing the wing for operation at Mach 0.785 and a Reynolds
number of 7.3 £ 106. The objective is minimizationof wing D=q as
calculated by the CFD solver with target lift, wing weight, volume,
pitch-upmargin, and root triangle layoutchosen to be representative
of a 220-seat wide-body airliner. Limits are placed on the design
variables that are typical of work in this area. (Although they still
admit designs that would be considered radical in practice, it is not
common to use sweep angles as high as 45 deg in a civil aircraft,
for example.)

The drag is computed either using the Tadpole concept design
tool developed by the former Airbus division of BAE Systems2 or
by using the commercial MGAERO CFD code, which is a viscous
coupled Euler solver.16 In the latter case, a series of drag recovery

routines are incorporated to assess the various drag components
in a fashion compatible with the Tadpole concept tool. The input
geometries to the CFD solver are created using a set of orthogo-
nal functions derived from NACA transonic foils.3;4 Typically the
Tadpole analysis takes a few seconds, whereas the Euler analysis
may require up to 2 h on a 1-GHz Pentium III processor.Typical re-
sults from these two systemsaredetailedin Table1, andFig. 1 shows
the equivalent geometry.Notice that in this case the wing is de� ned
by 11 parameters and also that constraints are placed on the wing
volume, undercarriagebay length, pitch-up margin, and weight. At
all times, the angle of attack is set to generate the required lift, and
the wing weight changes in a realistic fashion allowing for neces-
sary structural modi� cations as its dimensions alter. Here, the two
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Table 1 Initial design parameters, constraint values,
and objective function values

Lower limit Value Upper limit Quantity

100 168 250 Wing area, m2

6 9.07 12 Aspect ratio
0.2 0.313 0.45 Kink position
25 27.1 45 Sweep angle, deg
0.4 0.598 0.7 Inboard taper ratio
0.2 0.506 0.6 Outboard taper ratio
0.1 0.150 0.18 Root t=c
0.06 0.122 0.14 Kink t=c
0.06 0.122 0.14 Tip t=c
4.0 4.5 5.0 Tip washout, deg
0.65 0.75 0.84 Kink washout fraction

127,984 135,000 Wing weight, N
40.0 41.73 Wing volume, m3

4.179 5.4 Pitch-up margin
2.5 2.693 Undercarriage bay length, m

3.145 Tadpole D=q , m2

2.922 MGAERO D=q , m2

methods yield drag estimates that differ by some 8% despite the
careful validation of the Tadpole code and considerable effort in
attempting to get the drag recovery from the Euler code to work in a
directly compatible fashion.17¡19 This is partially due to the public
domain wing airfoil sections used to generate the CFD geometry,
which differ from the commercial sections for which Tadpole is
calibrated.

After this simpli� ed design problem is set up, it may then be very
rapidly optimized if the empirical code is used to estimate the drag.
Here a 25-generation genetic algorithm (GA) search with a popu-
lation size of 200 members has been used20 followed by a gradient
descent search to � ne tune the � nal optimum.21;22 Note that GAs
are not deterministic in nature and rely on the random number se-
quencesbeing used. When such stochasticsearch engines are tested
or developed, it is, therefore,normal practice to average results over
a number of statistically independent trials: When they are used in
design, this is a luxury that rarely can be afforded. Here each GA
search is carried out for just one set of random numbers. Therefore,
some caution must be exercised when considering the results, par-
ticularly those that depend on single, relatively short GA searches.
The results are more certain where several such searches are com-
bined in producingdesigns(suchaswhen using the multipleupdates
that will be described later) or when rather longer GA searcheswith
larger populations can be afforded (as here for the Tadpole search).

The GA used is fairly conventional except that it incorporates a
version of MacQueen’s adaptive KMean algorithm (see Ref. 23),
a clustering algorithm that has been applied with some success to
multipeak problems.24 It works with 12-bit binary encoding, an eli-
tist survival strategy that ensures that the best of each generation
always enters the next generation, � ve major control parameters,
a one-pass external constraint penalty function, and optional niche
forming.

The main control parameters used in this GA are P [best], the
proportion of the population that survives to the next generation
(default 0.8); P [cross], the proportion of the surviving population
that is allowed to breed (default 0.8); P [invert], the proportion of
the surviving population that have their genetic material reordered
(default 0.5); P [mutation], the proportion of the new generation’s
geneticmaterial that is randomlychanged(default0.005);and a pro-
portionality � ag that selects whether the new generation is biased
in favor of the most successful members of the previous genera-
tion or alternatively if all P [best] survivors are propagated equally.
(Default is to bias in favor of successful members.)

The version of the adaptive KMean algorithm used is controlled
by Dmin , the minimum nondimensionalEuclideandistancebetween
clustercenters,with clusterscloser than this beingcollapsed(default
0.1); Dmax, the maximum nondimensional Euclidean radius of a
cluster, beyond which clusters subdivide (default 0.2); Nclust, the
initial numberof clusters into which a generationis divided (default
25); Nbreed , the minimum number of members in a cluster before

exclusive inbreeding within the cluster takes place (default 5); and
®, the penalizing index for cluster members that determines how
severely members sharing an overcrowded niche will suffer, with
small numbers giving less penalty, that is, the objective functions
of members of a cluster of m solutions are scaled by mmin.®;1/[1 ¡
.E=Dmax/® ] C (E=Dmax/® , where E is the Euclidean distance of the
member from its cluster center, which is always less than Dmax.
Moreover, when E D Dmax or ® D 0, no penalty is applied (default
® D 0:5).

Like all evolutionary methods, the GA is rather slow and inac-
curate for problems with few variables but comes into its own as
the number of variables grows. It is also not suitable for problems
without bounds on all of the variables. Currently, GAs seem to the
best of the commonly used stochastic methods. Because of these
limitations, where possible the GA is followed up by a traditional
downhill search, normally the well-known simplex method,21 but
if this stalls, which it sometimes does, by Rosenbrock’s rotating
coordinate search.22

Application of this hybrid GA/downhill optimization strategy to
the Tadpole codedrives the wing volume constraintdown to its limit
and also increases the sweep angle considerably, although the total
wing area is little changed (Table 2). This reduces the drag by over
9% (as predicted by Tadpole). Such a search process represents the
current everyday activity of a concept design team. After this study
is carried out, the Southampton system then allows the drag to be
checked by invoking the CFD solver. This result is also recorded
in Table 2, and it is seen that again the predictions still differ, now
by 12%. The CFD-predicted drag has, however, been decreased by
nearly 13%.

Given the difference in drag between the two predictions, it is
interestingto check whether a direct search applied to the CFD code
would have produced a similar design geometry. Table 3 gives the
results of such a study, although now the GA optimizationhas been
reduced to 15 generationsand a populationsize of only 100, and the
� nal hill-climbing search has been omitted, all to save time. Even
so, this search represents some 150 days of computing effort; here
carried out on a cluster of personal computers running in parallel
over two weeks. (The Tadpole search took 10 minutes.)The extreme
cost of such searches makes them infeasible for everyday use, but
they do providebenchmarksagainstwhich to compare other results.
Notice that in this case thedrag is reducedby some14%(aspredicted
by the Euler CFD code) and that the two codes still do not agree on
the resulting drag, now differing by 19%. When Tables 2 and 3 are
compared, it is apparent that the two methodsconvergeto somewhat
different optima for this design study. The Tadpole-predicteddrag
in Table 3 is nearly 5% higher than that in Table 2, whereas the
CFD-predicted drag is slightly more than 1% lower. Moreover, the
CFD-based wing has a signi� cantly larger area.

Table 2 Final design parameters, constraint values,
and objective function values for the best design

produced by the direct Tadpole search

Lower limit Value Upper limit Quantity

100 168.5 250 Wing area, m2

6 9.32 12 Aspect ratio
0.2 0.244 0.45 Kink position
25 31.8 45 Sweep angle, deg
0.4 0.516 0.7 Inboard taper ratio
0.2 0.227 0.6 Outboard taper ratio
0.1 0.104 0.18 Root t=c
0.06 0.115 0.14 Kink t=c
0.06 0.063 0.14 Tip t=c
4.0 4.7 5.0 Tip washout, deg
0.65 0.68 0.84 Kink washout fraction

133,895 135,000 Wing weight, N
40.0 40.0 Wing volume, m3

5.04 5.4 Pitch-up margin
2.5 3.51 Undercarriage bay length, m

2.853 Tadpole D=q , m2

2.555 MGAERO D=q , m2
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Table 3 Final design parameters, constraint values,
and objective function values for the best design

produced by the direct MGAERO search

Lower limit Value Upper limit Quantity

100 177.5 250 Wing area, m2

6 9.30 12 Aspect ratio
0.2 0.406 0.45 Kink position
25 25.2 45 Sweep angle, deg
0.4 0.683 0.7 Inboard taper ratio
0.2 0.259 0.6 Outboard taper ratio
0.1 0.143 0.18 Root t=c
0.06 0.096 0.14 Kink t=c
0.06 0.069 0.14 Tip t=c
4.0 4.5 5.0 Tip washout, deg
0.65 0.67 0.84 Kink washout fraction

130,166 135,000 Wing weight, N
40.0 41.6 Wing volume, m3

3.67 5.4 Pitch-up margin
2.5 2.56 Undercarriage bay length, m

2.998 Tadpole D=q , m2

2.524 MGAERO D=q , m2

These results demonstrate the power of the Southampton wing
design system to explore interesting geometries. It is, however,
noticeable that the difference in drag estimation between the two
approaches has risen signi� cantly after the searches and that they
converge toward different geometries. Presumably the differences
in drag in Table 3 arise because the empirical code is then work-
ing rather far away from the calibrated zones for which it has been
extensively tested.

RSM
The searches reported in the preceding section simply involved

applying optimization methods directly to the analysis codes, in
this case using a GA for wide-ranging searches and then downhill
methods for local improvement, if they can be afforded. (Recall
that downhill methods cannot normally make great use of parallel
computing environments.) Even with parallel computing, searches
on the full Euler code are still very expensive to carry out. Conse-
quently,many workers in this � eld advocate the use of RSMs where
surrogate metamodels are produced by curve-� tting techniques to
samples of the expensive data.7;8

The basic RSM process involves selecting a limited number of
points at which the expensive code will be run, normally using
formal DOE methods.5;6 Then, when these designs have been ana-
lyzed,usuallyin parallel,a responsesurface(curve� t) is constructed
through or near the data. Design optimization is then carried out on
this surface to locatenew and interestingcombinationsof the design
variables, which may then, in turn, be fed back into the full code.
These data can then be used to update the model and the whole
process repeated until the user either runs out of effort, some form
of convergence is achieved, or suf� ciently improved designs are
reached. This process is shown in Fig. 2.

DOE Methods and Kriging
It is no surprise that there are a number of variations and re� ne-

ments that may be applied to the basic RSM approach. The litera-
ture offers many possible alternatives.Here, by way of example, an
LP¿ DOE sequence25 is used to generate the initial set of points and
a kriging model applied to build the RSM.7

Most DOE methods seek to sample ef� ciently the entire design
space by building an array of possible designs with relatively even
but not constant spacing between the points. Notice that this is in
contrast to a pure random spacing, which would result in some
groups of points occurring in clumps, whereas there were other re-
gions with relatively sparse data. This might be desirable if there
were no correlationbetween the responses at points, however close
they were to each other, that is, the process resembled white noise,
but this is highly unlikely in engineeringdesign problems.A partic-
ular advantageof the LP¿ approachis that not only does it give good

Fig. 2 RSM-based optimization strategy.

coverage for engineeringpurposes,but that it also allows additional
points to be added to a design without the need to repositionexisting
points. This can be useful if the designer is unsure how many points
will be needed before commencing work. Then, if the initial build
of the RSM is found to be inadequate, a new set of points can be
inserted without invalidating the statistical character of the experi-
ment. (Similarly, if for some reason the original experiment cannot
be completed, the sequence available at any intermediate stage will
still have useful coverage.)

After an array of data points is built up from which a surface
can be constructed, the user’s next major decision is whether or
not to regress (as opposed to interpolate) the data. Regression of
course allows for noise in the data (which may occur due to con-
vergence errors in CFD, for example) but also allows the response
surface to model rapidly changingdata without excessivecurvature.
Consider trying to � t a polynomial to a function like a square wave.
It is well known that such curve � ts typically have dif� culty model-
ing the steps in the function without overshoot if they are forced to
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interpolatethedatapoints.In such circumstances,a degreeof regres-
sion may give a more useful model, particularlywhen optimization
searchesare then applied to the problem because functionsusing re-
gression usually have fewer basins of attraction and are, thus, easier
to search.

The most obvious forms of regression are those using least-
squares(often quadratic)polynomials.These are commonly used in
the statistics community, and much of the RSM literature is based
on them. They are not good, however, at modeling complex surfaces
that have many local basins and bulges in them. Here a kriging ap-
proach is used instead7 because this allows the user to control the
amount of regressionas well as providinga theoreticallysoundbasis
for judging the degree of curvature needed to model adequately the
user’s data. Additionally,kriging provides measures of probable er-
rors in the model being built that can be used when assessingwhere
to place any further design points. It also allows for the relative
importance of variables to be judged.

In kriging, the inputs x are assumed to be related to the outputs
(responses) y by an expensive function fe(x). Here this function is
the MGAERO Euler CFD code drag prediction.The responseof the
code is then evaluated for combinations of inputs generated by the
DOE and used to construct an approximation,

Oy D Ofe.x/ (1)

The response at any x is then approximated by

y D ¹ C ".x/ (2)

where ¹ is the mean of the input responses and "(x) is a Gaussian
random function with zero mean and variance ¾ 2 . In kriging, " is
taken to depend on the distance between correspondingpoints. The
distance measure used here is

d¡x.i /; x. j/¢
D

k
X
h D 1

µh
¡x

.i /
h ¡ x

. j/
h

¢ph
(3)

where µh and ph are hyperparameterstuned to the data in hand. The
correlation between points x.i/ and x. j / is given by

R¡x.i/; x. j /¢
D exp£

¡d¡x.i /; x. j/¢¤
C 3±i j (4)

where 3 is a regularization constant that governs the degree of
regressionin the model and ±i j is the Dirac delta function.(When set
to zero, the kriging strictly interpolatesthe data supplied.)When the
responseat a new pointx is required,a vectorof correlationsbetween
the point and thoseused in the DOE is formed,r.x/ D R.x; x.i//. The
prediction is then given by

y.x/ D ¹ C rT R¡1.y ¡ 1¹/ (5)

where the mean ¹ is found from

¹ D 1T R¡1y=1T R¡11 (6)

The hyperparameters µh and ph and regularization constant 3 are
all obtained by maximizing the likelihood,de� ned as

1

.2¼/N=2.¾ 2/N=2jRj
1
2

exp
µ ¡. y ¡ 1¹/T R¡1. y ¡ 1¹/

2¾ 2

¶
(7)

where the variance ¾ 2 is given by

¾ 2
D . y ¡ 1¹/T R¡1. y ¡ 1¹/=N (8)

N is the number of points used in the DOE. The mean-squarederror
of the prediction is

s2.x/ D ¾ 2
µ

1 C rT R¡1r C
.1 ¡ 1T R¡1r/2

1T R¡11

¶
(9)

which gives a measureof the accuracyof the krigingat x. One of the
attractionsof kriging is that the µ hyperparametersproducedmay be

Fig. 3 Kriging procedure for function fe.

used to screen the variables in the data for relative importance if the
input variables are normalized to a unit range before the kriging is
tuned.Once tuned,thehyperparameterssimplyrank the signi� cance
of the variables they represent.

This basic approach can be used to model any response quantity,
including constraints.Here, because the constraintsmay be rapidly
computed, there is no need to apply the RSM process to them at all.
(In the studies reported, empirical structural and weight models are
used for the calculationsunderlyingthe constraints.)Thus, a kriging
is built just for the predicted drag. The general strategy is shown in
Fig. 3.

However, kriging is not a panacea for all evils. It is commonly
found that it is dif� cult to set up such models for more than 10–
20 variables and also that the approach is numerically expensive
if there are more than a few hundred data points because the setup
(hyperparametertuning)processrequires the repetitivelower–upper
(LU) decompositionof the correlationmatrix R, which has the same
dimensions as the number of points used. Moreover, the number of
such LU steps is strongly dependent on the number of variables,
and the likelihood is commonly highly multimodal. The author has
found that it is dif� cult to deal with kriging involving more than
15 variables and 500 data points.

Application of DOE and Kriging
To demonstrate basic RSM production, 250 points of an LP¿ ar-

ray have been applied to the example problem of Table 1, which
has 11 variables, using the inexpensive Tadpole code and a kriging
built using a GA and a gradient descent two-stage search of the
concentrated likelihood function to tune the hyperparameters. (See
Table 4 and note that log10(µ ) hyperparametervalues less than ¡2
indicate variables with relatively little impact on the kriging. Here,
the dominant variablesare, therefore,wing area, aspect ratio, sweep
angle, and inboard taper ratio.) To demonstrate the accuracy of this
model, 390 further random design points were also computed with
Tadpole, and then the results at these further points were predicted
using kriging. Figure 4 shows the correlation plot for this test data,
and it may be seen that, althoughsome differencesoccur, the overall
correlation coef� cient is 0.991. This relatively good predictive ca-
pability is also indicated by a standardized cross-validated (SCV)
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Table 4 Kriging hyperparameters for Tadpole model with
11 variables produced from 250 LP¿ data pointsa

Log10.µ/ ph Quantity

¡0.593 1.573 Wing area

¡1.428 1.826 Aspect ratio

¡2.294 1.778 Kink position

¡0.910 1.443 Sweep angle

¡1.574 1.569 Inboard taper ratio

¡2.006 1.596 Outboard taper ratio

¡2.177 1.824 Root t=c

¡2.320 2.000 Kink t=c

¡2.472 1.352 Tip t=c

¡8.615 1.886 Tip washout

¡2.761 1.468 Kink washout fraction

aRegularization constantD 10¡18.

Fig. 4 Correlation between 390 random Tadpole D/q calculations and
those predicted by the Kriging trained on a separate set of 250 LP¿

calculations.

residual test on the originaldata,where the mean SCV residual turns
out to be0.541with just two of the390residualsbeinggreater than 3.
(Values of less than 1 represent a good model, whereas those over
3 indicate poor correlations, that is, outliers.) Moreover, negligible
regularization (regression) is needed to model the data.

These results show that it is possible to build kriging successfully
with this many dimensionsusing250 data points.This is hardlynec-
essary for Tadpole given its run time, however,which is barely more
than that forusingthekrigingitself.Moreover,tuning thehyperpara-
meters for this model takes much longer than the generation of the
original Tadpole data. The real use of the approach arises when at-
tempting to model expensivedata coming from the CFD code itself.
This process is not so successful because the CFD data are intrin-
sically much less smooth and contain signi� cant noise. Table 5 and
Fig. 5 show an equivalent set of results for a kriging built on CFD
data,which yields a correlationcoef� cient of only 0.4903. It is clear
from Fig. 5 that there is much more scatter in these results, fortu-
nately, mostly for the higher drag data. With this model, the mean
SCV is 0.929, and now 10 residuals are greater than 3, again indi-
cating that these data are harder to model with many more outliers.
Signi� cant regularization is also required. Note further that the rel-
ative signi� cances of the variables have changed between Tables 4
and 5. In Table 5, the sweep angle is seen to be much less important
than in Table 4, whereas two of the thickness to chord ratios and
the kink washout fractionare more important. In Tables 4 and 5, the
wing area, aspect ratio, and inboard taper ratio remain signi� cant.

Of course, the real test for the kriging of the MGAERO data is
whether or not they can be successfully used to optimize the wing
designas predictedby the CFD code.Thus, nexta two-stageGA and
gradientdescentsearchhas been carriedout on the krigingRSM and
the resulting design evaluated with the CFD code (and Tadpole for

Table 5 Kriging hyperparameters for MGAERO model
with 11 variables produced from 250 LP¿ data-pointsa

Log10.µ/ ph Quantity

¡0.866 1.718 Wing area

¡1.698 1.983 Aspect ratio

¡8.228 1.513 Kink position

¡2.108 1.001 Sweep angle

¡0.282 1.004 Inboard taper ratio

¡3.782 2.000 Outboard taper ratio

¡1.848 2.000 Root t=c

¡0.967 1.830 Kink t=c

¡2.854 1.012 Tip t=c

¡3.293 1.749 Tip washout

¡1.668 2.000 Kink washout fraction

aRegularization constantD 1.22 £ 10¡2 .

Table 6 Design parameters, constraint values, and objective
function values for the best design produced by the search

on the initial MGAERO kriging

Lower limit Value Upper limit Quantity

100 169.7 250 Wing area, m2

6 8.135 12 Aspect ratio
0.2 0.411 0.45 Kink position
25 30.74 45 Sweep angle, deg
0.4 0.471 0.7 Inboard taper ratio
0.2 0.309 0.6 Outboard taper ratio
0.1 0.117 0.18 Root t=c
0.06 0.0732 0.14 Kink t=c
0.06 0.103 0.14 Tip t=c
4.0 4.005 5.0 Tip washout, deg
0.65 0.849 0.84 Kink washout fraction

134,920 135,000 Wing weight, N
40.0 40.0 Wing volume, m3

4.14 5.4 Pitch-up margin
2.5 3.30 Undercarriage bay length, m

2.429 Kriging D=q , m2

3.046 Tadpole D=q , m2

2.777 MGAERO D=q , m2

Fig. 5 Correlation between 390 random MGAERO D/q calculations
and those predicted by the Kriging trained on a separate set of 250 LP¿
calculations.

comparison)(Table 6). This designhas signi� cantlyworsedrag than
either of those in Tables 2 or 3 using either Tadpole or MGAERO
to predict the drag, despite the kriging predictingmuch lower drags
for this design. Clearly kriging is not modeling the data well in
this location. This is quite normal when dealing with problems in
high dimensionsbecause the initialDOE cannotbe expected to give
suf� cient coverage in all possible areas of interest. This is why it
is almost always necessary to update the data set used to build the
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krigingby adding new points in areas where good designs are being
predicted. (There are other schemes for positioning these added
points such as the use of expected improvement criteria, but these
are not discussed here; see Ref. 7 instead.)

Following theupdatestrategyofFig. 2, thedesignpointofTable 6
is then added to the set used to produce the kriging, and the hyper-
parametersretunedbeforeit is againused to try and� ndan improved
design. This process can be repeated as many times as the designer
wants or until some form of convergenceis achieved. Here 10 such
iterationsare carried out to yield the result of Table 7. This � nal de-
sign, althoughbetter than the initial design, fails to give D=q values
as goodas those achievedeitherby the direct searchon the empirical
Tadpole code, or on the Euler-based MGAERO CFD code. Its per-
formance is 0.7% worse than the best design achieved by Tadpole
optimization (and using Tadpole predictions for comparison) and
0.6% worse than that from the direct CFD optimization.This result
indicates that, although the RSM approach commonly yields im-
proved results, these may well not be as good as direct searches on
the underlying codes. This can occur even when suitable steps are
taken to update the surface as part of the process and represents a
fundamentallimitationof metamodeling.The approach is, however,
much faster than the direct CFD search because it requires nearly
six times fewer CFD evaluations.

Having shown what may be achieved with simple optimization
and thedirectresponsesurfaceapproach,attentionis turnedto fusion

Table 7 Final design parameters, constraint values, and objective
function values for the best design produced by the search on the

re� ned MGAERO kriging produced with 10 updates

Lower limit Value Upper limit Quantity

100 158.7 250 Wing area, m2

6 9.781 12 Aspect ratio
0.2 0.367 0.45 Kink position
25 30.18 45 Sweep angle, deg
0.4 0.467 0.7 Inboard taper ratio
0.2 0.300 0.6 Outboard taper ratio
0.1 0.133 0.18 Root t=c
0.06 0.106 0.14 Kink t=c
0.06 0.0627 0.14 Tip t=c
4.0 4.838 5.0 Tip washout, deg
0.65 0.679 0.84 Kink washout fraction

134,982 135,000 Wing weight, N
40.0 40.0 Wing volume, m3

4.99 5.4 Pitch-up margin
2.5 3.05 Undercarriage bay length, m

2.316 Kriging D=q , m2

2.879 Tadpole D=q , m2

2.543 MGAERO D=q , m2

Table 8 Final design parameters, constraint values, and objective function values for the
best designs produced by the two stage Tadpole/MGAERO and direct MGAERO searchesa

Lower Value Value (two stage Value (direct CFD Upper
limit (initial) search) search) limit Quantity

100 168 165.8 168 250 Wing area, m2

6 9.07 9.85 9.07 12 Aspect ratio
0.2 0.313 0.217 0.314 0.45 Kink position
25 27.1 31.6 27.1 45 Sweep angle, deg
0.4 0.598 0.459 0.495 0.7 Inboard taper ratio
0.2 0.506 0.202 0.273 0.6 Outboard taper ratio
0.1 0.150 0.174 0.177 0.18 Root t=c
0.06 0.122 0.068 0.077 0.14 Kink t=c
0.06 0.122 0.078 0.125 0.14 Tip t=c
4.0 4.5 4.5 4.8 5.0 Tip washout, deg
0.65 0.75 0.66 0.75 0.84 Kink washout fraction

191,879 190,582 187,703 135,000 Wing weight, N
40.0 42.35 40.8 45.5 Wing volume, m3

4.179 5.31 3.94 5.4 Pitch-up margin
2.5 2.693 3.84 3.34 Undercarriage bay length, m

3.12 2.75 3.02 Tadpole D=q , m2

2.85 2.37 2.54 MGAERO D=q , m2

aTaken from Ref. 1.

of the information coming from Tadpole and the MGAERO CFD
runs. Here, this is termed multilevel analysis.

Multilevel Analysis
With multilevel(multi� delityor zoom)analysis,it is assumedthat

the designer has at least two different ways of computing results of
interestfor the designunder consideration.In Ref. 1, an optimization
study was carriedout using the Southamptonmultilevelwing design
system by � rst applying a wide-rangingGA search to the empirical
code and then using this to seed a much smaller search on the Euler
code.The results of that study reduced the drag by some 17%, albeit
for a slightly different example. (The weight and structural models
used have since been re� ned for the work reported here, along with
the constraints placed on them.) This improved on the use of a
direct search applied to the CFD code alone by some 7%, because,
despite the differences between the codes, suf� cient improvement
was achieved by the empirical method that the CFD-based search
was able to capitalizeon thebetterstartingposition.These resultsare
reproduced in the columns of Table 8 for ease of reference. In both
cases, the MGAERO searches were 1000-step GA optimizations
(10 generations of 100 members).

Despite the improvement over a direct search, there remain two
fundamental problems with this two-stage approach: 1) Unless the
methods agree very well, there is a danger that the results coming
from one may mislead the other. Such differences are apparent in
all of the results in Tables 1–3 and 6–8. 2) The � nal direct search of
the CFD code is still too computationallyexpensive for routine use.
Clearly what would be preferable is a more sophisticatedapproach
to integratingthese sourcesof design information,that is, some kind
of data fusion system.

This may be achieved if instead of using the RSM to model the
expensive CFD code directly it is used to capture the differences
between this and the cheaper empirical alternative. The RSM then
serves as an online correction service to the empirical code so that,
when designsare studiedwhere it is lessaccurate, thecorrectionsde-
rived from full three-dimensionalCFD are automatically included.
To begin this process, data coming from the DOE run on MGAERO
is taken, and an equivalent set of drag results is computed for each
point, using Tadpole.The differencesbetween the two are then used
to form the kriging. Then, when searches are carried out and new
predictionsare needed, these are calculatedby calling both Tadpole
and the kriging and summing their contributions.Again the kriging
is built using a GA and gradient descent two-stage search of the
concentrated likelihood function to tune the hyperparameters. (See
Table 9 and note that now the log10.µ/ hyperparametersindicate the
dominant differences in the effects of variables and that the sweep
angle is the critical one here, that is, it is in the impact of sweep that
the two codes differ most.)
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Table 9 Kriging hyperparameters for fused
Tadpole/MGAERO model with 11 variables

produced from 250 LP¿ data pointsa

Log10.µ/ ph Quantity

¡1.875 2.000 Wing area

¡3.795 1.999 Aspect ratio

¡8.414 1.858 Kink position
2.844 1.807 Sweep angle

¡1.381 1.003 Inboard taper ratio

¡7.707 1.058 Outboard taper ratio

¡9.603 1.033 Root t/c

¡2.811 1.726 Kink t/c

¡9.746 1.064 Tip t/c

¡7.744 1.019 Tip washout

¡2.388 1.997 Kink washout fraction

aRegularization constantD 2 £ 10¡2 .

Fig. 6 Correlation between 390 random MGAERO D/q calculations
and those predicted by the Tadpole–Kriging fusion trainedon a separate
set of 250 LP¿ calculations.

Again the model may be tested by its ability to predict unseen
data. Figure 6 shows such a plot, where the same 390 results used
earlier are compared with the drag values coming from direct calls
to MGAERO. It may be seen that whereas signi� cant differences
do still occur, the overall correlation coef� cient is now 0.7319 as
compared to 0.4903 for the kriging, based solely on the MGAERO
data. This improved predictive capability arises despite the mean
SCV residualof the krigingbeing 1.224 with 22 of the 390 residuals
being greater than three. This is because the kriging is now not used
alone, but as a corrector to an already well set up empirical method,
that is, a combination of black-box and physics-basedestimators is
being used, so that de� ciencies in the kriging are compensated for
by Tadpole and vice versa. The correlationcoef� cient measures the
effectivenessof this combined process.

By use of this fusion model, optimization of the design being
studiedcan be tried.Table 10 shows the results fromusing the model
without any further updates, whereas Table 11 shows the results if
10 updates are added following the strategy already outlined.

Now the improvementin MGAERO drag beforeupdatesis almost
as good as that from the direct search on the code, whereas after
updates it is 0.3% better. Moreover, after the updates, the Tadpole
drag is over 1% better than for the direct search on the Tadpole
code at the same time. The � nal design is shown in Fig. 7. This
optimization process again uses around one-sixth of the computing
effort of the direct search on the CFD code.

It is interestingto compare the initial and � nal designs.The initial
design has slightly greater area, less sweep, and much higher per-
centageof its lift generatedby theoutboardsections.Noticealso that

in Fig. 1 there is weakly supersonic � ow over a large region of the
upper surface (although there is virtually no wave drag on this de-
sign), whereas in Fig. 7 there is a much more localized but stronger
shock near the wing tip. The impact of this shock on the overall
drag is more than compensated for, however, by the large, low-drag
inboard section of wing. Despite the shock, only 1.1% of the total
drag on the design is wave drag.Note also that the optimizeddesign
is at the limits of two of the constraints: wing volume and pitch-up

Table 10 Design parameters, constraint values, and objective
function values for the best design produced by the search on the

initial MGAERO/Tadpole difference kriging

Lower limit Value Upper limit Quantity

100 153.3 250 Wing area, m2

6 10.56 12 Aspect ratio
0.2 0.297 0.45 Kink position
25 27.04 45 Sweep angle, deg
0.4 0.424 0.7 Inboard taper ratio
0.2 0.201 0.6 Outboard taper ratio
0.1 0.129 0.18 Root t=c
0.06 0.106 0.14 Kink t=c
0.06 0.0820 0.14 Tip t=c
4.0 4.054 5.0 Tip washout, deg
0.65 0.655 0.84 Kink washout fraction

133,700 135,000 Wing weight, N
40.0 40.0 Wing volume, m3

4.61 5.4 Pitch-up margin
2.5 3.42 Undercarriage bay length, m

2.262 Kriging D=q , m2

2.875 Tadpole D=q , m2

2.531 MGAERO D=q , m2

Table 11 Final design parameters, constraint values and objective
function values for the best design produced by the search on the

re� ned MGAERO/Tadpole difference Krig produced with
10 updates and those for the initial design

Lower Upper Initial value
limit Value limit Quantity from Table 1

100 156.6 250 Wing area, m2 168
6 10.25 12 Aspect ratio 9.07
0.2 0.436 0.45 Kink position 0.313
25 31.2 45 Sweep angle, deg 27.1
0.4 0.438 0.7 Inboard taper ratio 0.598
0.2 0.200 0.6 Outboard taper ratio 0.506
0.1 0.118 0.18 Root t=c 0.150
0.06 0.124 0.14 Kink t=c 0.122
0.06 0.0667 0.14 Tip t=c 0.122
4.0 4.601 5.0 Tip washout, deg 4.5
0.65 0.717 0.84 Kink washout fraction 0.75

128,888 135,000 Wing weight, N 127,984
40.0 40.1 Wing volume, m3 41.73

5.4 5.4 Pitch-up margin 4.179
2.5 2.96 Undercarriage bay length, m 2.693

2.012 Kriging D=q , m2

2.817 Tadpole D=q , m2 3.145
2.515 MGAERO D=q , m2 2.922

Table 12 Summary of D/q results

% %
Table Tadpole Table 1 MGAERO Table 1 Kriging Notes

1 3.145 100.0 2.922 100.0 Initial design
2 2.853 90.7 2.555 87.4 Tadpole search
3 2.998 95.3 2.524 86.4 MGAERO search
6 3.046 96.9 2.777 95.0 2.429 Kriging search
7 2.879 91.5 2.543 87.0 2.316 Kriging plus

updates
10 2.875 91.4 2.531 86.6 2.262 Fusion kriging

search
11 2.817 89.6 2.515 86.1 2.012 Fusion kriging

plus update
13 2.831 90.0 2.471 84.6 2.260 Best design ever
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Fig. 7 Geometry of � nal design produced by the search on the re� ned MGAERO/Tadpole difference kriging with 10 updates (plan view shows upper
surface supersonic Mach contours).

Table 13 Final design parameters, constraint values
and objective function values for the lowest MGAERO

drag design found for the problem being searched

Lower limit Value Upper limit Quantity

100 147.6 250 Wing area, m2

6 11.20 12 Aspect ratio
0.2 0.436 0.45 Kink position
25 26.3 45 Sweep angle, deg
0.4 0.491 0.7 Inboard taper ratio
0.2 0.215 0.6 Outboard taper ratio
0.1 0.176 0.18 Root t=c
0.06 0.0941 0.14 Kink t=c
0.06 0.0605 0.14 Tip t=c
4.0 4.992 5.0 Tip washout, deg
0.65 0.849 0.84 Kink washout fraction

131,785 135,000 Wing weight, N
40.0 40.1 Wing volume, m3

4.75 5.4 Pitch-up margin
2.5 2.58 Undercarriage bay length, m

2.260 Kriging D=q , m2

2.831 Tadpole D=q , m2

2.471 MGAERO D=q , m2

margin. This is a common feature in optimization processes and
means that great care must be placed in setting the values of such
hard constraints. The various drag values from all of the searches
described here are summarized in Table 12 for ease of comparison.

Finally, remember that noneof the designsproducedusing direct,
simple RSM or fusion-based RSM searches can be guaranteed to
be at the optimum of the problem being tackled: If different search
strategiesor startingpointsare employed,differentoptimacan be lo-
cated. Table 13 shows one such design that is better than all of those

detailed so far from the MGAERO point of view. This design was
in fact produced without using the Tadpole-based fusion strategy,
although locating it was something of a � uke: It was found when
testing the system described with all 640 MGAERO evaluations to
build RSMs. Using bigger data sets is clearly an advantage when
carrying out data modeling. It turns out to be 1.5% better than the
design given by the fusion-based approach in terms of MGAERO
predictions (but note that it is worse in terms of Tadpole drag cal-
culations, as might be expected).

Conclusions
Three distinct methods for carrying out aerodynamic design op-

timization are described: direct optimization of the user’s analysis
codes, search of a response surface derived from the user’s codes,
and search of a response surface derived from two related but dif-
ferent � delity user codes. The latter multilevel or fusion-based ap-
proach seeks to combine the speed of fast empirical codes with the
precision of full three-dimensional CFD solvers. This requires an
integrated system of analysis that allows multiple codes to be used
alongside each other: Here this is provided by the Southampton
wing design system that has been described before.

In the study reported, the fusion-basedapproach is shown to out-
performdirect search of the CFD code at considerablyreducedcost,
while also being more accurate than a simple RSM using only data
from the CFD code.

Acknowledgments
Developmentof the Southampton wing design environmentused

here was supportedby the U.K. Engineering and Physical Sciences
Research Council under Grant GR/L04733 and by BAE Systems.
Their support is gratefully acknowledged.



750 KEANE

References
1Keane, A. J., andPetruzzelli, N., “Aircraft Wing Design UsingGA-Based

Multilevel Strategies,” AIAA Paper 2000-4937,Sept. 2000.
2Cousin,J., andMetcalfe, M., “TheBAE Ltd.TransportAircraft Synthesis

and Optimization Program,” AIAA Paper 90-3295, Sept. 1990
3Robinson,G. M., and Keane, A. J., “Concise OrthogonalRepresentation

of Supercritical Airofoils,” Journal of Aircraft, Vol. 38, No. 3, 2001,
pp. 580–583.

4Harris, C. D., “NASA Supercritical Airfoils: A Matrix ofFamily-Related
Airfoils,” NASA TP 2969, March 1990.

5Mead, R., The Design of Experiments, Cambridge Univ. Press,
Cambridge, England, U.K., 1988.

6Mackay, M. D., Beckman, R. J., and Conover, W. J., “A Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis of
Output from a Computer Code,” Technometrics, Vol. 21, 1979, pp. 239–245.

7Jones, D. R., Schonlau, M., and Welch, W. J., “Ef� cient Global
Optimization of Expensive Black-box Functions,” Journal of Global Op-
timization, Vol. 13, 1998, pp. 455–492.

8Myers, R. H., and Montgomery, D. C., Response Surface Methodology:
Process and Product Optimization Using Design of Experiments, Wiley,
New York, 1995.

9Alexandrov, N. M., Dennis, J. E., Lewis, R. M., and Torczon, V., “A
Trust Region Framework for Managing the Use of Approximation Models
in Optimisation,” Structural Optimization, Vol. 15, 1998, pp. 16–23.

10Vitali, R., Haftka, R. T., and Sankar, B. V., “Multi� delity Design of
Stiffened Composite Panel with a Crack,” 4th World Congress of Structural
and Multidisciplinary Optimization, Paper 51-AAM2-1, Buffalo, NY, May
1999.

11Malone, J. B., Housner, J. M., and Lytle, J. K., “The Design of Fu-
ture Airbreathing Engine Systems Within an Intelligent Synthesis Environ-
ments,” Proceedings of the 14th International Symposium on Air Breathing
Engines, edited by P. J. Waltrup, Florence, 1999.

12Hutchinson, M. G., Unger, E. R., Mason, W. H., and Haftka,
R. T., “Variable Complexity Aerodynamic Optimization of a High-
Speed Civil Transport Wing,” Journal of Aircraft, Vol. 31, No. 1, 1994,
pp. 110–116.

13Liu, B., Haftka, R. T., and Akgün, M. A., “Two-Level Composite Wing
Structural Optimization Using Response Surfaces,” Structural Optimization,
Vol. 20, No. 2, 2000, pp. 87–96.

14Zang, A. T., and Green, L. L., “Multidisciplinary Optimization Tech-
niques: Implications and Opportunities for FluidDynamic Research,” AIAA
Paper 99-3798, Norfolk, VA, June 1999.

15Hutchison, M. G., Unger, E. R., Mason, W. H., Grossman, B., and
Haftka, R. T., “Variable-Complexity Aerodynamic Optimization of a High-
Speed Civil Transport Wing,” Journal of Aircraft, Vol. 31, No. 1, 1994,
pp. 110–116.

16Epstein, B., Luntz, A., and Nachson, A., “MultigridEuler Solver About
Aircraft Con� gurations,with Cartesian Grids and Local Re� nement,” AIAA
Paper 89-1960, 1989.

17Lock, R. C., “Prediction of the Drag of Aerofoils and Wings at High
Subsonic Speeds,” Aeronautical Journal, June/July 1986, pp. 207–226.

18Squire, H. B., and Young, A. D., “The Calculation of Pro� le Drag of
Aerofoils,” Aeronautical Research Council, ARC R&M 1838, 1937.

19van Dam, C. P., and Nikfetrat, K., “Accurate Prediction of Drag
Using Euler Methods,” Journal of Aircraft, Vol. 29, No. 3, 1992,
pp. 516–519.

20Goldberg, D. E., Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison Wesley Longman, Reading, MA, 1989.

21Nelder, J. A., and Meade, R., “A Simplex Method for Function Mini-
mization,” Computer Journal, Vol. 7, 1965, pp. 308–313.

22Rosenbrock, H. H., “An Automatic Method for Finding the Greatest
or Least Value of a Function,” Computer Journal, Vol. 3, No. 3, 1960,
pp. 175–184.

23Yin, X., and Germay, N., “A Fast Genetic Algorithm with Sharing
Scheme Using Cluster Methods in MultimodalFunctionOptimization,”Pro-
ceedings of the International Conference on Arti� cial Nueral Nets and Ge-
netic Algorithms, edited by R. F. Albrecht, C. R. Reeves, and N. C. Steele,
Springer-Verlag, Berlin, 1993, pp. 450–457.

24Anderberg, M. R., Cluster Analysis for Applications, Academic Press,
New York, 1975.

25Statnikov, R. B., and Matusov, J. B., Multicriteria Optimization and
Engineering, Chapman and Hall, New York, 1995.


